Ch. 13 Acids and Bases

Return to TOC

Acid-Base Theory


Nomenclature


Acids

Bases

Anhydrides


Neutralization Reactions


Polyprotic Acids


Brønsted-Lowry Theory


pH and pOH

Weak Acid/Base pH

Example

A solution contains 0.100 M\pu{0.100 } MHF\pu{\ce{HF}}. What is the pH of the solution given Ka=6.6104K_a=6.6\cdot10^{-4}?


Use an RICE table

ReactionHF\ce{HF}\ce{<=>}HX+\ce{H+}++FX\ce{F-}
Initial0.100 M\pu{0.100 }M0 M\pu{0 }M0 M\pu{0 }M
Changex-x+x+x+x+x
Equilibrium0.100x0.100-xxxxx

The equilibrium expression gives
Ka=[HX+][FX][HF]6.6104=x20.100xK_a=\frac{[\ce{H+}][\ce{F-}]}{[\ce{HF}]}\rightarrow 6.6\cdot10^{-4}=\frac{x^2}{0.100-x}
KaK_a is small enough that the xx in the denominator can be ignored
6.6104=x20.100x=8.121036.6\cdot10^{-4}=\frac{x^2}{0.100}\rightarrow x=8.12\cdot10^{-3}
Finally, since [HX+]=x=8.12103[\ce{H+}]=x=8.12\cdot10^{-3}, the pH\ce{pH} is log8.12103=2.09-\log{8.12\cdot10^{-3}}=2.09

Example

What is the pH of a 0.500 M\pu{0.500 } M solution of CHX3NHX2\ce{CH3NH2} given Kb=4.2104K_b=4.2\cdot10^{-4}?


This is an ammonium-related base, so the reaction contains water as the acid
Using a RICE table

ReactionCHX3NHX2\ce{CH3NH2}++HX2O\ce{H2O}\ce{<=>}CHX2NHX3X+\ce{CH2NH3+}OHX\ce{OH-}
Initial0.500 M\pu{0.500 }M-0 M\pu{0 }M0 M\pu{0 M}
Changex-x-+x+x+x+x
Equilibrium0.500x0.500-x-xxxx

The equilibrium expression gives
Kb=[OHX][CHX2NHX3X+][CHX3NHX2]4.2104=x20.500xK_b=\frac{[\ce{OH-}][\ce{CH2NH3+}]}{[\ce{CH3NH2}]}\rightarrow4.2\cdot10^{-4}=\frac{x^2}{0.500-x}
KbK_b is small enough that the xx in the denominator can be ignored
4.2104=x20.500x=1.451024.2\cdot10^{-4}=\frac{x^2}{0.500}\rightarrow x=1.45\cdot10^{-2}
Since [OHX]=x=1.45102[\ce{OH-}]=x=1.45\cdot10^{-2}, the pOH\ce{pOH} is log1.45102=1.84-\log{1.45\cdot10^{-2}}=1.84
Finally, since pH+pOH=14\ce{pH + pOH}=14, the pH\ce{pH} is 141.84=12.1614-1.84=12.16

Hydrolysis Reaction

Example

When NaX2SOX3\ce{Na2SO3} is dissolved in water, it ionizes into NaX+\ce{Na+} cations and SOX3X2\ce{SO3^2-} anions.
These are conjugate pairs to NaOH\ce{NaOH} (strong base) and HX2SOX3\ce{H2SO3} (weak acid) respectively.
A strong base is stronger than a weak acid, so the solution will be basic

Buffer Solutions

Example

Find the pH of a solution of 0.125 M\pu{0.125 }MNX2HX4\ce{N2H4} and 0.321 M\pu{0.321 }MNX2HX5Cl\ce{N2H5Cl} given Kb=9.6107K_b=9.6\cdot10^{-7}


Using a RICE table

ReactionNX2HX4\ce{N2H4}++HX2O\ce{H2O}\ce{<=>}NX2HX5X+\ce{N2H5+}++OHX\ce{OH-}
Initial0.125 M\pu{0.125 }M-0.321 M\pu{0.321 }M0 M\pu{0 }M
Changex-x-+x+x+x+x
Equilibrium0.125x0.125-x-0.321+x0.321+xxx

The equilibrium expression gives
Kb=[OHX][NX2HX5X+][NX2HX4]9.6107=x(0.321+x)0.125xK_b=\frac{[\ce{OH-}][\ce{N2H5+}]}{[\ce{N2H4}]}\rightarrow 9.6\cdot10^{-7}=\frac{x(0.321+x)}{0.125-x}
KbK_b is small enough that it may be ignored.
9.6107=0.321x0.125x=3.741079.6\cdot10^{-7}=\frac{0.321x}{0.125}\rightarrow x=3.74\cdot10^{-7}
Since [OHX]=x=3.74107[\ce{OH-}]=x=3.74\cdot10^{-7}, pOH=log3.74107=6.43\ce{pOH}=-\log{3.74\cdot10^{-7}}=6.43 and pH=146.43=7.57\ce{pH}=14-6.43=7.57

Polyprotic Acids


Henderson-Hasselbalch Equation


Titration Curves

  1. start with an acid or base
  2. titrant is added until the equivalence point: all reactant is converted into product; salt solution
  3. more titrant is added, leaving excess titrant